Решите неравенство:1. 2. 3. 4. 5.

0 голосов
33 просмотров

Решите неравенство:
1. image625" alt=" 5^{-x}>625" align="absmiddle" class="latex-formula">
2. ( \frac{4}{3}) ^{2x-1} \geq \frac{3}{4}
3. ( \frac{1}{3}) ^{5 x^{2} +8x-4} \leq 1
4. image0 " alt=" 5^{2x}-6* 5^{x}+5>0 " align="absmiddle" class="latex-formula">
5. \sqrt{ 6^{x} } \geq 216


Алгебра (722 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image625, \\ 5^{-x}>5^4, \\ 5>1, -x>4, \\ x<-4;" alt="1. \ 5^{-x}>625, \\ 5^{-x}>5^4, \\ 5>1, -x>4, \\ x<-4;" align="absmiddle" class="latex-formula">
image1, 2x-1 \geq -1, \\ 2x \geq 0, \\ x \geq 0;" alt="2. \ (\frac{4}{3}) ^{2x-1} \geq \frac{3}{4}, \\ (\frac{4}{3}) ^{2x-1} \geq (\frac{4}{3})^{-1}, \\ \frac{4}{3}>1, 2x-1 \geq -1, \\ 2x \geq 0, \\ x \geq 0;" align="absmiddle" class="latex-formula">
3. \ (\frac{1}{3}) ^{5 x^{2} +8x-4} \leq 1, \\
(\frac{1}{3}) ^{5 x^{2} +8x-4} \leq (\frac{1}{3}) ^{0}, \\
\frac{1}{3}<1, 5 x^{2} +8x-4 \geq 0, \\ 
5 x^{2} +8x-4=0, \\
D_{/4}=36, \\ 
x_1=-2, x_2= \frac{2}{5}, \\ 
 \left [ {{x \leq -2,} \atop {x \geq 0,4;}} \right.
image0 , \\ 5^{x}=a, a^2-6a+5>0, \\ a^2-6a+5=0, \\ a_1=1, a_2=5, \\ \left [ {{a<1,} \atop {a>5;}} \right. \left [ {{5^{x}<1,} \atop {5^{x}>5;}} \right. \left [ {{x<0,} \atop {x>1;}} \right. " alt="5. \ 5^{2x}-6\cdot5^{x}+5>0 , \\ 5^{x}=a, a^2-6a+5>0, \\ a^2-6a+5=0, \\ a_1=1, a_2=5, \\ \left [ {{a<1,} \atop {a>5;}} \right. \left [ {{5^{x}<1,} \atop {5^{x}>5;}} \right. \left [ {{x<0,} \atop {x>1;}} \right. " align="absmiddle" class="latex-formula">
6. \ \sqrt{6^{x}} \geq 216, \\ 
6^{\frac{x}{2}} \geq 6^3, \\ 
\frac{x}{2} \geq 3, \\
x \geq 6.
(93.5k баллов)