Радиус вписанной в равнобедренный треугольник окружности вычисляется по формуле r=(b/2)*(корень из (2а-b)/(2a+b)), где r—радиус вписанной в треугольник окружности, b—основание равноб. треуг., а—боковая сторона. Вычислим:
r=(10/2)*(корень из (2*13-10)/(2*13+10))=5*(корень из (16/36))=5*(4/6)=20/6=3целых 1/3.
Ответ: r=3целых1/3