Рассмотрим элементы

по отдельности.
Можно заметить, что они являются членами геометрической прогрессии, где каждый элемент больше последующего в 7 раз. Следовательно, это есть сумма геометрической прогрессии с

элементов.

.
Получили, что нужно доказать кратность выражения

.

.
Докажем кратность методом математической индукции (2 этапа):
1. Этап проверки: проверяется, истинно ли предложение (утверждение) P(1).
2. Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).
Рассмотрим 1ый шаг при

:
Доказано при

выполняется.
Рассмотрим 2ой шаг при

.
Что и требовалось доказать.