Дан треугольник АВС, АВ=ВС=15 см, АС=18см, R-радиус описанной окружности, r- радиус вписанной окружности. BK - высота, S- площадь треугольника АВС, Р-периметр треугольника АВС. Решение: S=(AC*BC*AB)/4R. S=1/2*P*r. S=1/2BK*AC. Рассм треуг-к ВКС - прямоугольный, по т. Пифагора ВС^2=BK^2+KC^2. КC=1/2AC, BK^2=BC^2-KC^2=225-81=144, BK=12 см. S=1/2BK*AC=1/2*12*18=108 см.R=(AC*BC*AB)/(4*S)=(15*15*18)/(4*108)=75/8 см.
r=2*S/Р=2*S/(АС+ВС+АВ)=2*108/(15+15+18)=9/2 см.