1. Сторона правильної чотирикутної піраміди дорівнює а , а її діагональний переріз –...

0 голосов
251 просмотров

1. Сторона правильної чотирикутної піраміди дорівнює а , а її діагональний переріз – рівносторонній трикутник. Знайдіть об’єм піраміди. 2. Висота правильної чотирикутної піраміди дорівнює 12 см, а апофема – 15 см. Обчисліть площу бічної поверхні піраміди. 3. Сторона основи правильної трикутної піраміди дорівнює 6 см, а висота піраміди - см. Знайдіть площу бічної поверхні піраміди. 4. Сторона основи правильної трикутної піраміди дорівнює 8 см, а бічна грань нахилена до площини основи під кутом 300. Знайдіть площу повної поверхні піраміди. 5. Основа піраміди – трикутник зі сторонами 13 см, 14 см і 15 см. Знайдіть площу перерізу, який проходить паралельно площині основи і ділить висоту піраміди у відношенні 1:2. Рахуючи від вершини піраміди. Знайдіть об‘єм правильної чотирикутної піраміди, сторона основи якої дорівнює 6 см, а діагональний переріз є рівностороннім трикутником


image
image
image
image
image

Геометрия (24 баллов) | 251 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

№1. Сторона правильной четырехугольной пирамиды равна а, а диагональное сечение - равносторонний треугольник. Найти объем пирамиды.

--------

Пирамида QABCD, QO -  высота,  АQC- диагональное сечение, АВ=а.

V=S•h:3

S=a²

h=AC√3/2 

AC=a:sin45°=a√2

h=a√6/2

V=a³√6/6

----------------------------------------

№2. Высота правильной четырехугольной пирамиды равна 12 см, а апофема – 15 см. Вычислить площадь боковой поверхности пирамиды. 

       Апофема – высота боковой грани правильной пирамиды, следовательно, QH⊥CD. По т. о 3-х перпендикулярах ОН⊥CD. 

По т.Пифагора ОН=9 ( можно обойтись без вычислений, т.к. ∆ QOH- египетский, где отношение катет:гипотенуза=4:5).

ОН - половина АD, ⇒АD=2OH=18 (см)

Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания. 

S=15•18•4:2=540 см².

————————

№3. Условие неполное.  

 Объем  V  правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC), на высоту h (OS)

Формула площади основания S=a²√3/2. Зная высоту, несложно вычислить объём данной пирамиды. 

———————

№4.

Сторона основания правильной треугольной пирамиды равна 8 см, а боковая грань наклонена к плоскости основания под углом 30°. Найти площадь полной поверхности пирамиды. 

S(бок)=3•MH•AB:2=3•8/3•8:2=32

————————

№5 

Основание пирамиды – треугольник со сторонами 13 см, 14 см, 15 см. Найти площадь сечения, которое проходит параллельно плоскости основания и делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. 

————————

№6.

Найти объём правильной четырехугольной пирамиды, сторона основания которой равна 6 см, а диагональное сечение является равносторонним треугольником. 

———————

Решения задач 4,5,6  даны в приложениях. 

(228k баллов)