0, \\
-6\cdot(-5)\cdot(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
30(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)=0, \\
x_1=-3, x_2=- \frac{1}{6}, x= \frac{4}{5}, \\
x\in(-3;- \frac{1}{6})\cup(\frac{4}{5};+\infty)" alt="(-6x-1)(4-5x)(x+3)>0, \\
-6\cdot(-5)\cdot(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
30(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)>0, \\
(x+\frac{1}{6})(x-\frac{4}{5} )(x+3)=0, \\
x_1=-3, x_2=- \frac{1}{6}, x= \frac{4}{5}, \\
x\in(-3;- \frac{1}{6})\cup(\frac{4}{5};+\infty)" align="absmiddle" class="latex-formula">