Пожалуйста вычислите: log₈32

0 голосов
41 просмотров

Пожалуйста вычислите: log₈32


Математика (166 баллов) | 41 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
8= 2^{3} \\ 32= 2^{5} \\ \\ log_{8} 32= \frac{5}{3} \\ \\ 8^{ \frac{5}{3} } = ( \sqrt[3]{8} )^{5} =32

Напишу,пожалуй,подробнее)

log_{8} 32= log_{8} ( 2^{5} )=5 log_{8} 2=5 log_{ 2^{3} }2 = \frac{5}{3} log_{2}2 = \frac{5}{3} *1= \frac{5}{3}
(302k баллов)
0 голосов

Решите задачу:

log_832=log_82^5=5log_82=5log_8\sqrt[3]{2^3}=5log_8\sqrt[3]8=5log_88^\frac{1}{3}\\\\=5\cdot\frac{1}{3}log_88=\frac{5}{3}\cdot1=1\\\\-----------------------------\\\\a;b\in\mathbb{R^+}\ \wedge\ a\neq1\\\\log_ab^c=c\cdot log_ab\\\\log_aa=1
(1.0k баллов)