Фотография справа-налево получилась.
Вобщем, решением 2 нер-ва является круг без границы с центром в точке (2;1) и Rадиусом = sqrt(2) . (x^2 + y^2 -4x - 2y +4 + 1 -4 -1 < -3 ==> (x-2)^2 + (y-1)^2 < 2 ).
Первое нер-во расписываем в систему:
{y>lx-3l , x>=2
{y>l1-xl , x<2<br>
В итоге, строим график кусочно заданной функции модулей и круг без границы, все точки, находящиеся выше ломанной (графика функции - системы модулей), попадающие во внутрь круга являются решениями системы неравенств.
Площадь состоит из полукруга (то что он без границы нам не важно, погрешность при вычислении площади - бесконечно мала) и 2ух секторов по 45 град каждый (опять же, у них отсутствует дуга), это именно сектора, так как радиус нашего круга = sqrt(2). На рисунке нарисовал горизонтальную прямую, чтобы было видно разделение. (На рисунке выколотые точки кажутся, наоборот, включенными, это не так:) )
По сути, в нашем круге без границы вырезали сектор 90 град. ==> S = 3/4 S круга = 3/4 * pi * r^2 = 1.5 pi