64^{x^2-4}
\\\
(2^{-2} )^{3x}>(2^6)^{x^2-4}
\\\
2^{-6x}>2^{6x^2-24}
\\\
-6x>6x^2-24
\\\
6x^2+6x-24<0
\\\
x^2+x-4<0
\\\
D=1+4\cdot4=17
\\\
x= \frac{-1\pm \sqrt{17} }{2}
\\\
x\in(\frac{-1-\sqrt{17} }{2} ; \frac{-1+\sqrt{17} }{2} )" alt="( \frac{1}{4} )^{3x}>64^{x^2-4}
\\\
(2^{-2} )^{3x}>(2^6)^{x^2-4}
\\\
2^{-6x}>2^{6x^2-24}
\\\
-6x>6x^2-24
\\\
6x^2+6x-24<0
\\\
x^2+x-4<0
\\\
D=1+4\cdot4=17
\\\
x= \frac{-1\pm \sqrt{17} }{2}
\\\
x\in(\frac{-1-\sqrt{17} }{2} ; \frac{-1+\sqrt{17} }{2} )" align="absmiddle" class="latex-formula">
0}} \right. \\\ 0 0}} \right. \\\ 0
( \frac{3}{4})^{-2} } \atop {4x+3>0}} \right.
\\\
\left \{ {{4x+3> \frac{16}{9} } \atop {x>- \frac{4}{3} }} \right.
\\\
\left \{ {{4x>- \frac{11}{9} } \atop {x>- \frac{4}{3} }} \right.
\\\
\left \{ {{x>- \frac{11}{36} } \atop {x>- \frac{4}{3} }} \right.
\\\
x>- \frac{11}{36}" alt="\log_{ \frac{3}{4} }(4x+3)<-2
\\\
\left \{ {{4x+3>( \frac{3}{4})^{-2} } \atop {4x+3>0}} \right.
\\\
\left \{ {{4x+3> \frac{16}{9} } \atop {x>- \frac{4}{3} }} \right.
\\\
\left \{ {{4x>- \frac{11}{9} } \atop {x>- \frac{4}{3} }} \right.
\\\
\left \{ {{x>- \frac{11}{36} } \atop {x>- \frac{4}{3} }} \right.
\\\
x>- \frac{11}{36}" align="absmiddle" class="latex-formula">
0}} \right. \\\ \left \{ {{-x \leq 8} \atop {x> 9}} \right. \\\ \left \{ {{x \geq -8} \atop {x >9}} \right. \\\ x >9" alt="\lg(x-9) \leq \lg(2x-1) \\\ \left \{ {{x-9 \leq 2x-1} \atop {x-9 >0}} \right. \\\ \left \{ {{-x \leq 8} \atop {x> 9}} \right. \\\ \left \{ {{x \geq -8} \atop {x >9}} \right. \\\ x >9" align="absmiddle" class="latex-formula">
2
\\\
3x+1>7^2
\\\
3x+1>49
\\\
3x>48
\\\
x>12" alt="\log_7(3x+1)>2
\\\
3x+1>7^2
\\\
3x+1>49
\\\
3x>48
\\\
x>12" align="absmiddle" class="latex-formula">
0}} \right. \\\ \left \{ {{2x \leq8} \atop {x> \frac{7}{3} }} \right. \\\ \left \{ {{x \leq4} \atop {x> \frac{7}{3} }} \right. \\\ \frac{7}{3} 0}} \right. \\\ \left \{ {{2x \leq8} \atop {x> \frac{7}{3} }} \right. \\\ \left \{ {{x \leq4} \atop {x> \frac{7}{3} }} \right. \\\ \frac{7}{3}
\log_{0.5}(3-2x) \\\ \left \{ {{x<3-2x} \atop {x>0}} \right. \\\ \left \{ {{3x<3} \atop {x>0}} \right. \\\ \left \{ {{x<1} \atop {x>0}} \right. \\\ 0\log_{0.5}(3-2x) \\\ \left \{ {{x<3-2x} \atop {x>0}} \right. \\\ \left \{ {{3x<3} \atop {x>0}} \right. \\\ \left \{ {{x<1} \atop {x>0}} \right. \\\ 0