1. Определяем площадь основания пирамиды
S(осн) = (a²√3) :4 = (16√3) :4 = 4√3 (см²).
Радиус описанного окружности основания равен
R=(a/2)/(sin60) = (4/2)/(√3/2) = 2/(√3/2) = (4√3)/3 (см)
Тогда высота по т. Пифагора
h = √(b²-R²)=√(8²-(4√3/3)²)=√(528/9) =4/3√33 (см)
Отсюда объём равна
V=S(осн)*h/3 = (4√3*4/3√33)/3 = (16√11)/3 (см³).
Ответ: (16√11)/3 (см³).