a1+(a1+d)+(a1+2d)=3
a1^3+(a1+d)^3+(a1+2d)^3=4
3a1+3d=3 => a1+d=1 =>a1=1-d
Подставим во второе уравнение
(1-d)^3+1^3+(1+d)^3=4
(1-d)^3+(1+d)^3=3
(d+1)^3-(d-1)^3=3
(d^3+3d^2+3d+1)-(d^3-3d^2+3d-1)=3
6d^2-1=0
6d^2=1
d=±1/sqrt(6)
если d=-1/sqrt(6),то
a1=1-d=1+1/sqrt(6)
a2=a1+d=1/sqrt(6)-1/sqrt(6)=1
a3=a2+d=1-1/sqrt(6)
если d=1/sqrt(6), то
a1=1-d=1-1/sqrt(6)
a2=a1+d=1-1/sqrt(6)+1/sqrt(6)=1
a3=a2+d=1+1/sqrt(6)