В правильной шестиугольной призме АBCDEFA1B1C1E1F1 все ребра равны 5 найдите расстояние...

0 голосов
81 просмотров

В правильной шестиугольной призме АBCDEFA1B1C1E1F1 все ребра равны 5 найдите расстояние от точки А до прямой C1D1


Геометрия (21 баллов) | 81 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Соединим точки А, С, и С1. Рассмотрим треугольник АВС. В нем угол В - угол правильного шестиугольника. Сумма углов шестиугольника вычисляется по формуле 180х(n-2)=180x(6-2)=720 (градусов), следовательно каждый угол в шестиугольник равен 720/6=120 (градусов). Поскольку призма правильная, все стороны шестиугольника равны, поэтому треугольник АВС - равнобедренный, следовательно углы ВАС и ВСА равны. Сумма углов в треугольнике равна 180 градусов, тогда каждый из углов ВАС и ВСА равен (180-120)/2=30 (градусов).
Угол С в шестиугольнике равен 120 градусам и он состоит из суммы углов ВСА и АСD. Тогда угол АСD=120-30=90 (градусов), т.е. прямой. Но если угол АСD прямой, то прямой и угол AC1D1, следовательно длина прямой АС1 является искомым расстоянием от точки А до прямой С1D1.
Длину AC1 найдем из треугольника AC1C, в котором угол АСС1 прямой, поскольку призма правильная. Длина гипотенузы АС1 по теореме Пифагора равна квадратному корню из суммы квадратов катетов АС и СС1. Длину АС найдем из треугольника АВС, который рассматривали ранее.
По теореме косинусов АС²=АВ²+ВС²-2*АВ*ВС*cos(120)=5²+5²-2*5*5*(-0.5)=25+25+25=75. AC=5√3
Тогда АС1²=АС²+СС1³=(5√3)²+5²=75+25=100 ⇒ АС=10


image
(142k баллов)