-\frac{7}{6},\; to\; 3^{-\frac{5}{6}}>3^{-\frac{7}{6}}." alt="(\sqrt[3]9)^{-\frac{5}{4}}=(3^2)^{\frac{1}{3}(-\frac{5}{4})}=3^{-\frac{2\cdot 5}{3\cdot 4}}=3^{-\frac{5}{6}}\\\\\sqrt{\frac{1}{3}\cdot 9^{-\frac{2}{3}}}=\sqrt{3^{-1}\cdot 3^{-\frac{2\cdot 2}{3}}}=\sqrt{3^{-1-\frac{4}{3}}}=(3^{-\frac{7}{3}})^{\frac{1}{2}}=3^{-\frac{7}{6}}\\\\Tak\; kak\; -\frac{5}{6}>-\frac{7}{6},\; to\; 3^{-\frac{5}{6}}>3^{-\frac{7}{6}}." align="absmiddle" class="latex-formula">