Преобразование тригонометрических выражений

0 голосов
37 просмотров

Преобразование тригонометрических выражений


image

Алгебра (21 баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)
7cos^2 a-5+7sin^2 a=7(cos^2 a+sin^2 a)-5=\\\\7*1-5=2
использовали основное тригонометрическое тождество
2)
(cos x+sin x)^2-sin (2x)=\\\\cos^2 x+2*sin x*cos x+sin^2 x-2*sin x *cos x=1
основное тригонометрическое тождество, формула синуса двойного угла
3)
\frac{1+cos(2a)}{2cos a}=\frac{2cos^2 a}{2cos a}=cos a
формула понижения степени(квадрата) для косинуса
4)
1-\frac{sin(2a)*sin a}{2cos a}=\\\\1-\frac{2sin a*cos a*sin a}{2cos a}=\\\\1-sin^2 a=cos^2
формула синуса двойного угла, основное тригонометрическое тождество

(409k баллов)