Вычислите площадь фигуры,ограниченной линиями: а) у=9-х2(квадрат), у=0 б)...

0 голосов
47 просмотров

Вычислите площадь фигуры,ограниченной линиями:

а) у=9-х2(квадрат), у=0

б) у(х-1)2(квадрат),у=х+1, у=0


Геометрия (98 баллов) | 47 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

а)  S = интеграл от -3 до 3 от(9 - х квад)dx = 9х /(от -3 до 3)  -  (х в кубе)/3 / (от -3 до 3) = (27+27) - (9+9) = 36.

 

б)  Сначала аналитически найдем точки пересечения графиков:

(х-1) квад = х+1. Или х квад - 3х = 0. х1 = 0;  х2 = 3. Тогда искомая площадь:

 S = S1 - S2. Здесь S1 - площадь под прямой у=х+1 на участке от 0 до 3, а S2- площадь под параболой (х-1) квад  на том же участке.

S = интеграл от 0 до 3 от [(х+1) - (х-1)квад]dx  = интеграл от 0 до 3 от (3х - хквад)dx = [3(хквад)/2 - хкуб/3]  /взято от 0 до 3 = 27/2  -   27/3  = 9/2 = 4,5

 Ответ: 4,5

(84.9k баллов)