![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%3C2%7D+%5Catop+%7B3x%2B5%3E3%28x%2B1%29%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3C2%7D+%5Catop+%7B3x%2B5%3E3x%2B3%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3C2%7D+%5Catop+%7B3x-3x%3E3-5%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3C2%7D+%5Catop+%7B0%3E-2%7D%7D+%5Cright.+%5C%3B+%5Cto+%5C%3B+x%3C2)
3(x+1)}} \right. \; \left \{ {{x<2} \atop {3x+5>3x+3}} \right. \; \left \{ {{x<2} \atop {3x-3x>3-5}} \right. \; \left \{ {{x<2} \atop {0>-2}} \right. \; \to \; x<2" alt=" \left \{ {{x<2} \atop {3x+5>3(x+1)}} \right. \; \left \{ {{x<2} \atop {3x+5>3x+3}} \right. \; \left \{ {{x<2} \atop {3x-3x>3-5}} \right. \; \left \{ {{x<2} \atop {0>-2}} \right. \; \to \; x<2" align="absmiddle" class="latex-formula">
0>-2 верное неравенство , не зависящее от х.Поэтому остаётся первое неравенство.
![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%2B1%3E2%7D+%5Catop+%7Bx%2B2%3C-1%7D%7D+%5Cright.+%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%3E1%7D+%5Catop+%7Bx%3C-3%7D%7D+%5Cright.+%5C%3B+%5C%3B+%5C%3B+%2F%2F%2F%2F%2F%28-3%29------%281%29%2F%2F%2F%2F%2F)
2} \atop {x+2<-1}} \right. \; \left \{ {{x>1} \atop {x<-3}} \right. \; \; \; /////(-3)------(1)/////" alt=" \left \{ {{x+1>2} \atop {x+2<-1}} \right. \; \left \{ {{x>1} \atop {x<-3}} \right. \; \; \; /////(-3)------(1)/////" align="absmiddle" class="latex-formula">
Множества не пересекаются, поэтому в ответе: х Є пустому множеству (или можно написать, что система неравенств не имеет решений).