Два стрелка произвели по 5 выстрелов, причём попадания были следующие: 10, 9, 9, 8, 8, 5,...

0 голосов
48 просмотров

Два стрелка произвели по 5 выстрелов, причём попадания были следующие: 10, 9, 9, 8, 8, 5, 4, 4, 3, 2. Первыми тремя выстрелами они выбили одинаковое количество очков, но тремя последними выстрелами первый стрелок выбил втрое больше очков, чем второй. Определите, сколько очков набрал каждый из них третьим выстрелом.


Алгебра (45 баллов) | 48 просмотров
Дан 1 ответ
0 голосов

Обозначим через аi число очков, выбитых первым стрелком при i-м выстреле, а через bi число очков, выбитых вторым стрелком при i-м выстреле.
Тогда из условий задачи следует:
а1+а2+а3= b1+b2+b3, (1)
а3+а4+а5= 3(b3+b4+b5), (2)
Из приведенных попаданий заключаем, что равенство (2) может выполняться, если b1, b2, b3, минимальные по числу очков попадания, а а3, а4, а5 максимальные и сумма а3+а4+а5 кратна трем. Отсюда видно, что b3, b4, b5, это числа 2, 3 и 4, а а3, а4, а5 это числа 10, 9, 8. Далее видим, что первыми четырьмя выстрелами (каждый стрелок сделал по два) они выбили очки: 9, 8, 5, 4. Используем условие (1). Очевидно, что при этом сумма а1+а2 должна быть наименьшей при ее выборе из четырех чисел (9, 8, 5, 4), а b1+b2 наибольший при выборе ее из тех же чисел. Это возможно при a=5, a2=4, a3=10, b1=9, b2=8, b3=2.

(739 баллов)