100 Баллов! Основанием пирамиды MABCD является параллелограмм. Ребро AM пирамиды параллельно плоскости основания ABCD. AB = AC = a. Угол BAC = 2φ, а угол между плоскостью основания и гранью MBC = φ. Вычислите полную площадь пирамиды.
Не может быть ребро АМ параллельно плоскости АВСД?
Простите, перпендикулярно.
Исправьте , можно войти в "изменить" и исправить
Треугольник АВС - равнобедренный. АС=АВ=а, угол при вершине равен 2β ( всместо буквы фи) Тогда углы при основании этого треугольника ∠ В= ∠ АСВ= (180°-2β)/2=90°-β И значит ∠ D= 90°-β Найдем площадь треугольника АВС S(Δ ABC)= (1/2)·AC·AB·sin 2β=(a²/2)·sin2β S(осн)=2·S(ΔABC) так как Δ АВС= ΔADC S(осн)=2·(a²/2)·sin2β=a²·sin2β С другой стороны площадь основания равна произведению стороны на высоту, проведенную к стороне. S(осн)=DC·AK ⇒ Площадь параллелограмма также равна произведению сторон на синус унла между ними S(осн)=AD·DC ·sin∠ D ⇒ Найдем АТ, зная, что площадь основания равна произведению стороны на высоту, проведенную к стороне. S(осн)=ВC·AТ ⇒ Рассмотрим треугольник МAТ: MA=AT·sinβ=acosβ·sinβ Боковая поверхность 1) S(ΔМАВ)=(1/2)MA·AB=(1/2)·a²·cosβ·sinβ 2) S(ΔМАD)=(1/2)MA·AD=(1/2)·a·cosβ·sinβ·2a·sinβ Из треугольника МАК найдем апофему МК по теореме Пифагора МК²=MA²+AK²=(acosβ·sinβ)²+(asin2β)²=a²cos²βsin²β+4a²cos²βsin²β=(разложили sin2β=2sinβcosβ)=5a²sin²βcos²β MK=a√5sinβcosβ 3) S(ΔМDC)=(1/2)DC·MK=(1/2)·a²√5sinβcosβ Из треугольника МАТ найдем апофему МТ по теореме Пифагора МТ²=MA²+AТ²=(acosβ·sinβ)²+(acosβ)²=a²cos²βsin²β+a²cos²β=a²cos²β(1+cos²β) MT=acosβ√(1+cos²β) 4) S(ΔМBC)=(1/2)BC·MТ=(1/2) AD·MT= (1/2)·a²·sinβ·cos²β·√(1+cos²β) Осталось сложить ответы п. 1)-4) и получим боковую поверхность Если прибавим площадь основания, то получим полную поверхность