Номер 359 С одз И ответом, с учетом одз

0 голосов
39 просмотров

Номер 359
С одз
И ответом, с учетом одз


image

Алгебра (2.8k баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image0\\2x^2+3=0\ x-7=0\\x^2=-1,5\ \ x=7\\\_\_\_\_-\_\_\_(7)///+///>x\\x>7\\log_\frac{1}{2}\frac{2x^2+3}{x-7}<0;\frac{1}{2}<1\\\frac{2x^2+3}{x-7}>1\\\frac{2x^2+3}{x-7}-1>0\\\frac{2x^2-x+10}{x-7}>0\\2x^2-x+10=0\ \ \ \ x-7=0\\x_{1,2}=\frac{1^+_-\sqrt{-79}}{4}\ \ \ \ \ \ \ x=7\\OD3:\_\_\_\_-\_\_\_(7)///+///>x\\\_\_\_\_-\_\_\_\_\_\_\_\_\_\_\_(7)///+///>x\\x\in(7;+\infty)" alt="OD3:\\\frac{2x^2+3}{x-7}>0\\2x^2+3=0\ x-7=0\\x^2=-1,5\ \ x=7\\\_\_\_\_-\_\_\_(7)///+///>x\\x>7\\log_\frac{1}{2}\frac{2x^2+3}{x-7}<0;\frac{1}{2}<1\\\frac{2x^2+3}{x-7}>1\\\frac{2x^2+3}{x-7}-1>0\\\frac{2x^2-x+10}{x-7}>0\\2x^2-x+10=0\ \ \ \ x-7=0\\x_{1,2}=\frac{1^+_-\sqrt{-79}}{4}\ \ \ \ \ \ \ x=7\\OD3:\_\_\_\_-\_\_\_(7)///+///>x\\\_\_\_\_-\_\_\_\_\_\_\_\_\_\_\_(7)///+///>x\\x\in(7;+\infty)" align="absmiddle" class="latex-formula">
(73.0k баллов)