В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N — середина ребра ВС. Вычислите косинус угла между прямыми MN и А1С.
Решение задачи проще, если применить координатный метод, привязав начало координат к любой из вершин куба (через вектора). Тогда косинус угла между векторами А1С и MN равен: cosα= MN*A1C/|MN|*|AC|=36/4√3*√29 = 9/√87.
Решение задачи координатным способом (см рис)