** городской олимпиаде по математике каждому участни- ку присваивается шифр —...

0 голосов
77 просмотров

На городской олимпиаде по математике каждому участни-
ку присваивается шифр — произвольное число, оканчиваю-
щееся номером класса, в котором он учится. В олимпиаде
по 6 и 7 классам приняли участие 75 детей, и оказалось,
что сумма шифров шестиклассников равна сумме шифров
семиклассников. На следующий год в олимпиаде по 7 и 8
классам приняли участие эти же 75 ребят. Могли ли суммы
шифров этих теперь уже семи- и восьмиклассников опять
оказаться равными? Обоснуйте свой ответ. (Шифры следу-
ющего года не связаны с шифрами предыдущего.)


Математика (15 баллов) | 77 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
m-количество шестиклассников в будущем семиклассников. 
n - количество семиклассников в будущем восьмиклассников. 
s - сумма присвоенных шестиклассникам произвольных номеров. 
c - сумма присвоенных семиклассникам произвольных номеров. 
Те же суммы, только уже семи и восьмиклассников обозначим как s` и с` 

т.к. номер каждого ученика заканчивается номером его класса, то s=2r,r∈Z, а т.к. s=c то и c=2r,r∈Z, следовательно n=2r,r∈Z, а m=2r+1,r∈Z т.к 75 нечетное. Но тогда s`=2r+1,r∈Z, a с`=2r,r∈Z, следовательно с`≠s`, поэтому не могли.
 
(82 баллов)
0

Спасибо огромное!