Внешний угол прямоугольного треугольника в 2 раза больше угла, смежного с ним. Найдите...

0 голосов
164 просмотров

Внешний угол прямоугольного
треугольника в 2 раза больше угла,
смежного с ним. Найдите меньший отрезок
гипотенузы, который отсекает
перпендикуляр, проведённый из вершины
прямого угла на гипотенузу, если
гипотенуза равна 100


Математика | 164 просмотров
Дан 1 ответ
0 голосов
http://ru.static.z-dn.net/files/da2/506aa6c49094b2bbf77645f84c990f72.pngВнешний угол прямоугольного треугольника в 2 раза больше угла, смежного с ним. Найдите меньший отрезок гипотенузы, который отсекает перпендикуляр, проведённый из вершины прямого угла на гипотенузу, если гипотенуза равна 100.
——
Внешний угол и смежный с ним составляют развернутый угол, величина которого, как известно, равна 180
°
Пусть данный угол треугольника будет х
°, а внешний 2х°
Тогда сумму этих углов можно записать уравнением  
х+2х=180°
3х=180°х=60°
Сумма острых углов прямоугольного треугольника равна 90°
⇒ второй острый угол равен 30°
Меньший катет ( на рисунке это катет СВ) противолежит углу 30
° и равен половине гипотенузы.
СВ=100:2=50
Перпендикуляр, проведённый из вершины прямого угла на гипотенузу, делит ее на два отрезка. Меньший - НВ-  прилежит углу 60° и противолежит углу 30°
НВ=СВ:2
НВ=50:2=25

(327 баллов)