Через середину одной из сторон треугольника провести прямую, делящую периметр...

0 голосов
43 просмотров

Через середину одной из сторон треугольника провести прямую, делящую периметр треугольника пополам.


Геометрия (15 баллов) | 43 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Пусть прямую нужно провести через точку Д, середину стороны ВС, а

АВ > AC .  На отдельной прямой из некоторой точки К проведем 

КМ = АВ и КN = AC. разделим отрезок MN пополам. Пусть точка Т - его середина. Тогда МТ = (АВ - АС)/2.  Отложим отрезок МТ от точки А по стороне АВ. Получаем точку Е. Тогда  ВЕ = АС + АЕ = (АВ + АС)/2.

Прямая ДЕ - искомая.

Примечание. Я не описываю, как отрезок делится циркулем и линейкой пополам, так как это описано в школьном учебнике.

(54.9k баллов)
0 голосов

АВС. АВ = с;  ВС = а;  АС = в.

Пусть через т.М - середину АВ=с проводим прямую МО , где т, О находится на ВС.

Тогда, из условия:

b + (c/2) + OC = (a+b+c)/2

Отсюда ОС = (а/2)  -  ((b/2).

Ответ: надо на стороне , как пример а,  поставить точку О так, чтобы ОС = (а-b)/2

(84.9k баллов)