Напишите пять первых элементов последовательности, заданной общим элементов. Является ли данная последовательность монотонной, ограниченной, сходящейся.
x2=2/2^3=2/8=1/4; x3=3/2^4=3/16; x4=4/2^5=1/8; x5=5/2^6=5/64
исправил, спасибо
По признаку Даламбера ряд сходится, если предел отношения (n+1)го члена к n-му будет<1
a(n+1)=(n+1)/2^(n+2); a(n+1)/a(n)=((n+1)/2^(n+2)):(n/2^(n+1))=((n+1)/2^(n+2))*(2^(n+1)/n)=1/2*(n+1/n)=1/2*(1+1/n). Предел 1/n равен 0 при n стрем к беск. Значит искомый предел равен 1/2, т.е. ряд сходится