1)
6}} \right.\\ \left \{ {{6^{3x-2} \leq 6^{-2}} \atop {x^2+5x-6>0}} \right.\\ \left \{ {6>1; 3x-2 \leq -2} \atop {(x+6)(x-1)>0}} \right.\\ \left \{ {3x \leq 0} \atop {(x+6)(x-1)>0}} \right.\\ \left \{ {x \leq 0} \atop {x+6<0 ;V; x-1>0}} \right.\\ \left \{ {x \leq 0} \atop {x>1 ;V; x<-6}} \right.\\ x<-6" alt="\left \{ {{6^{3x-2} \leq \frac{1}{36}} \atop {x^2+5x>6}} \right.\\ \left \{ {{6^{3x-2} \leq 6^{-2}} \atop {x^2+5x-6>0}} \right.\\ \left \{ {6>1; 3x-2 \leq -2} \atop {(x+6)(x-1)>0}} \right.\\ \left \{ {3x \leq 0} \atop {(x+6)(x-1)>0}} \right.\\ \left \{ {x \leq 0} \atop {x+6<0 ;V; x-1>0}} \right.\\ \left \{ {x \leq 0} \atop {x>1 ;V; x<-6}} \right.\\ x<-6" align="absmiddle" class="latex-formula">
x є
2)
(пересечение двух шаров это круг)
Пусть О1- центр первого шара, О2- центр второго шара, А , В -крайние точки пересечения (см.рис.) О1О2=13 см, О1А=О1В=5 см, О2А=О2В=12 см
12^2+5^2=13^2 - значит треугольники О1АО2 и О1ВО2 - прямоугольне за следствием из теоремы косинусов (или обратной теоремой Пифагора)
Высота прямоугольного трегольника, проведенная к гипотенузе равна
Поэтому
искомое расстояние
AB - диаметр окружности, а длина окружности - длина линии сечения равна
3) Площадь поверхности шара равна , где R- радиус шара
поєтому радиус шара равен см
высота цилиндра равна H=2R=2*3=6 см
радиус цилилндра равен r=R=3 см
обьем цилиндра равен куб.см