Найдите область определения функции y=(x^2-9)^-1/3
Решение y = (x^2 - 9)^(-1/3) = 1/ (x^2 - 9)^(1/3) x^2 - 9 ≠ 0 x^2 ≠ 9 x ≠ -3 x ≠ 3 D(y) = (-≈ ; -3) (3; ≈)
Скажите, пожалуйста, а как вы определили границы интервала? что не от -3 до 3,например.
Мы рассматриваем область определения любой функции на интервале D(y) = (-≈ ; ≈) и из него исключаем те точки, при которых знаменатель обращается в ноль.