данная функция квадратическая
Ищем абсциссу вершины параболы
![x=-\frac{b}{2a}=-\frac{-4}{2*(-1)}=-2 x=-\frac{b}{2a}=-\frac{-4}{2*(-1)}=-2](https://tex.z-dn.net/?f=x%3D-%5Cfrac%7Bb%7D%7B2a%7D%3D-%5Cfrac%7B-4%7D%7B2%2A%28-1%29%7D%3D-2)
коєффициент при x^2 : a=-1<0, значит ее ветви направлены вниз</p>
(по свойствам квадратической функции)
данная функция спадает![[-2;\infty) [-2;\infty)](https://tex.z-dn.net/?f=%5B-2%3B%5Cinfty%29)
возростает на ![(-\infty;2] (-\infty;2]](https://tex.z-dn.net/?f=%28-%5Cinfty%3B2%5D)
3 задача Пусть добавили х л 5%раствора, тогда соли в нем 0.05х, в 20л 15% раствора соли 20*15:100=3 л, получили 20+х раствора, соли в котором 0.05х+3
По условию задачи составляем уравнение
![\frac{3+0.05x}{x+20}=\frac{10}{100};\\ 10(3+0.05)x=x+20;\\ 30+0.5x=x+20;\\ x-0.5x=30-20;\\ 0.5x=10; x=20 \frac{3+0.05x}{x+20}=\frac{10}{100};\\ 10(3+0.05)x=x+20;\\ 30+0.5x=x+20;\\ x-0.5x=30-20;\\ 0.5x=10; x=20](https://tex.z-dn.net/?f=%5Cfrac%7B3%2B0.05x%7D%7Bx%2B20%7D%3D%5Cfrac%7B10%7D%7B100%7D%3B%5C%5C+10%283%2B0.05%29x%3Dx%2B20%3B%5C%5C+30%2B0.5x%3Dx%2B20%3B%5C%5C+x-0.5x%3D30-20%3B%5C%5C+0.5x%3D10%3B+x%3D20)
ответ: 20 л
2 задача
по формуле расстояния ищем две смежные стороны и диагональъ
![AB=\sqrt{(5-0)^2+(4-3)^2}=\sqrt{26};\\ AD=\sqrt{(5-9)^2+(4-8)^2}=\sqrt{32}=4\sqrt{2};\\ BD=\sqrt{(9-0)^2+(8-3)^2}=\sqrt{106} AB=\sqrt{(5-0)^2+(4-3)^2}=\sqrt{26};\\ AD=\sqrt{(5-9)^2+(4-8)^2}=\sqrt{32}=4\sqrt{2};\\ BD=\sqrt{(9-0)^2+(8-3)^2}=\sqrt{106}](https://tex.z-dn.net/?f=AB%3D%5Csqrt%7B%285-0%29%5E2%2B%284-3%29%5E2%7D%3D%5Csqrt%7B26%7D%3B%5C%5C+AD%3D%5Csqrt%7B%285-9%29%5E2%2B%284-8%29%5E2%7D%3D%5Csqrt%7B32%7D%3D4%5Csqrt%7B2%7D%3B%5C%5C+BD%3D%5Csqrt%7B%289-0%29%5E2%2B%288-3%29%5E2%7D%3D%5Csqrt%7B106%7D+)
по формуле Герона площадь треугольника ABD равна
![S(ABD)=\sqrt{p(p-a)(p-b)(p-c)}=\\ 0.25\sqrt{(\sqrt{26}+\sqrt{32}+\sqrt{106})(\sqrt{26}+\sqrt{32}-\sqrt{106})(-\sqrt{26}+\sqrt{32}+\sqrt{106})(\sqrt{26}-\sqrt{32}+\sqrt{106})}=\\ 0.25\sqrt{((\sqrt{26}+\sqrt{32})^2-(\sqrt{106})^2)((\sqrt{106})^2-(\sqrt{32}-\sqrt{26}))=\\ S(ABD)=\sqrt{p(p-a)(p-b)(p-c)}=\\ 0.25\sqrt{(\sqrt{26}+\sqrt{32}+\sqrt{106})(\sqrt{26}+\sqrt{32}-\sqrt{106})(-\sqrt{26}+\sqrt{32}+\sqrt{106})(\sqrt{26}-\sqrt{32}+\sqrt{106})}=\\ 0.25\sqrt{((\sqrt{26}+\sqrt{32})^2-(\sqrt{106})^2)((\sqrt{106})^2-(\sqrt{32}-\sqrt{26}))=\\](https://tex.z-dn.net/?f=S%28ABD%29%3D%5Csqrt%7Bp%28p-a%29%28p-b%29%28p-c%29%7D%3D%5C%5C+0.25%5Csqrt%7B%28%5Csqrt%7B26%7D%2B%5Csqrt%7B32%7D%2B%5Csqrt%7B106%7D%29%28%5Csqrt%7B26%7D%2B%5Csqrt%7B32%7D-%5Csqrt%7B106%7D%29%28-%5Csqrt%7B26%7D%2B%5Csqrt%7B32%7D%2B%5Csqrt%7B106%7D%29%28%5Csqrt%7B26%7D-%5Csqrt%7B32%7D%2B%5Csqrt%7B106%7D%29%7D%3D%5C%5C+0.25%5Csqrt%7B%28%28%5Csqrt%7B26%7D%2B%5Csqrt%7B32%7D%29%5E2-%28%5Csqrt%7B106%7D%29%5E2%29%28%28%5Csqrt%7B106%7D%29%5E2-%28%5Csqrt%7B32%7D-%5Csqrt%7B26%7D%29%29%3D%5C%5C)
![0.25\sqrt{(26+32+2\sqrt{32*26}-106)(106-32-26+2\sqrt{26*32})}=\\ 0.25\sqrt{(2\sqrt{32*26}-48)(2\sqrt{26*32})+48}=\\ 0.25\sqrt{(2\sqrt{32*26})^2-48^2}=\\ 0.25\sqrt{(4*32*26-48^2}=8 0.25\sqrt{(26+32+2\sqrt{32*26}-106)(106-32-26+2\sqrt{26*32})}=\\ 0.25\sqrt{(2\sqrt{32*26}-48)(2\sqrt{26*32})+48}=\\ 0.25\sqrt{(2\sqrt{32*26})^2-48^2}=\\ 0.25\sqrt{(4*32*26-48^2}=8](https://tex.z-dn.net/?f=0.25%5Csqrt%7B%2826%2B32%2B2%5Csqrt%7B32%2A26%7D-106%29%28106-32-26%2B2%5Csqrt%7B26%2A32%7D%29%7D%3D%5C%5C+0.25%5Csqrt%7B%282%5Csqrt%7B32%2A26%7D-48%29%282%5Csqrt%7B26%2A32%7D%29%2B48%7D%3D%5C%5C+0.25%5Csqrt%7B%282%5Csqrt%7B32%2A26%7D%29%5E2-48%5E2%7D%3D%5C%5C+0.25%5Csqrt%7B%284%2A32%2A26-48%5E2%7D%3D8)
S(ABCD)=2S(ABC)=2*8=16
задача 1
по теореме косинусов ищем диагональ
![AC^2=AD^2+CD^2-2AD*CD*cos (ADC);\\ AC^2=6^2+6^2-2*6*6*cos 120=2*6^2*(1+0.5)=6\sqrt{3}; AC^2=AD^2+CD^2-2AD*CD*cos (ADC);\\ AC^2=6^2+6^2-2*6*6*cos 120=2*6^2*(1+0.5)=6\sqrt{3};](https://tex.z-dn.net/?f=AC%5E2%3DAD%5E2%2BCD%5E2-2AD%2ACD%2Acos+%28ADC%29%3B%5C%5C+AC%5E2%3D6%5E2%2B6%5E2-2%2A6%2A6%2Acos+120%3D2%2A6%5E2%2A%281%2B0.5%29%3D6%5Csqrt%7B3%7D%3B+)
(по ТТП и свойству высоты равнобедреного треугольника, и свойству диагоналей параллелограмма)![AO=\frac{AC}{2}=\frac{6\sqrt{3}}{2}=3\sqrt{2}; AO=\frac{AC}{2}=\frac{6\sqrt{3}}{2}=3\sqrt{2};](https://tex.z-dn.net/?f=AO%3D%5Cfrac%7BAC%7D%7B2%7D%3D%5Cfrac%7B6%5Csqrt%7B3%7D%7D%7B2%7D%3D3%5Csqrt%7B2%7D%3B)
по теореме Пифагора искомое растояние
![MO^2=AM^2+AO^2;\\ MO^2=6^2+(3\sqrt{2})^2;\\ MO^2=36+18=54;\\ MO=3\sqrt{6} MO^2=AM^2+AO^2;\\ MO^2=6^2+(3\sqrt{2})^2;\\ MO^2=36+18=54;\\ MO=3\sqrt{6}](https://tex.z-dn.net/?f=MO%5E2%3DAM%5E2%2BAO%5E2%3B%5C%5C+MO%5E2%3D6%5E2%2B%283%5Csqrt%7B2%7D%29%5E2%3B%5C%5C+MO%5E2%3D36%2B18%3D54%3B%5C%5C+MO%3D3%5Csqrt%7B6%7D)