![image](https://tex.z-dn.net/?f=8%5Csin%5E2x%2B%5Ccos+x%2B1%3D0%5C%5C8%281-%5Ccos%5E2x%29%2B%5Ccos+x%2B1%3D0%5C%5C8%5Ccos%5E2x%2B%5Ccos+x%2B1%3D0%5C%5C%5Ccos%5E2x-%5Ccos+x-9%3D0%5C%5C%5Ccos+x%3Dt%2C%5C%3B%5Ccos%5E2x%3Dt%5E2%2C%5C%3Bt%5Cin%5B-1%3B%5C%3B1%5D%5C%5C8t%5E2-t-9%3D0%5C%5CD%3D1%2B4%5Ccdot8%5Ccdot9%3D1%2B288%3D289%3D%2817%29%5E2%5C%5Ct_1%3D%5Cfrac%7B1-17%7D%7B16%7D%3D-1%5C%5Ct_2%3D%5Cfrac%7B1%2B17%7D%7B16%7D%3D%5Cfrac%7B18%7D%7B16%7D%3E1%5C%3B-%5C%3BHE%5C%3Bnogx.%5C%5C%5Ccos+x%3D-1%5C%5Cx%3D%5Cpi%2B2%5Cpi+n%2C%5C%3Bn%5Cin%5Cmathbb%7BZ%7D)
1\;-\;HE\;nogx.\\\cos x=-1\\x=\pi+2\pi n,\;n\in\mathbb{Z}" alt="8\sin^2x+\cos x+1=0\\8(1-\cos^2x)+\cos x+1=0\\8\cos^2x+\cos x+1=0\\\cos^2x-\cos x-9=0\\\cos x=t,\;\cos^2x=t^2,\;t\in[-1;\;1]\\8t^2-t-9=0\\D=1+4\cdot8\cdot9=1+288=289=(17)^2\\t_1=\frac{1-17}{16}=-1\\t_2=\frac{1+17}{16}=\frac{18}{16}>1\;-\;HE\;nogx.\\\cos x=-1\\x=\pi+2\pi n,\;n\in\mathbb{Z}" align="absmiddle" class="latex-formula">