Каждый ненулевой вектор ( α1 , α2 ), компоненты которого удовлетворяют условию А*α1 + В*α2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0.
1) Подставим в А*α1 + В*α2 = 0 наши данные p = (2; -1)
2А-В=0
В=2А
далее получим уравнение
Ax+2Ay+C=0
x+2y+C/A=0
подставив нашу точку M○ (-3; 2) получаем
-3+2*2+C/A=0
C/A=-1
и наше уравнение
x+2y-1=0
2) Подставим в А*α1 + В*α2 = 0 наши данные p = (-3; 4)
-3A+4B=0
B=3/4A
далее получим уравнение
Ax+3/4Ay+C=0
x+3/4y+C/A=0
подставив нашу точку M○(3;5) получаем
3+15/4+C/A=0
C/A=-27/4
и наше уравнение
x+3/4y-27/4=0
или
4x+3y-27=0