Из точки А к плоскости alpha проведены наклонные АВ=10 см и АС= 17 см. Зная, что проекции...

0 голосов
104 просмотров

Из точки А к плоскости alpha проведены наклонные АВ=10 см и АС= 17 см. Зная, что проекции этих наклонных на плоскость относятся как 2:5, найти расстояние от точки А до плоскости alpha


Алгебра (178 баллов) | 104 просмотров
Дан 1 ответ
0 голосов

Соединим точки B и C. Опустим перпендикуляр AD из точки A на BC.
По условию BD:DC=2:5
Пусть BD=2x; DC=5x
По теореме Пифагора
AD^2=AB^2-BD^2=100-4x^2; AD^2=AC^2-DC^2=289-25x^2⇒
100-4x^2=289-25x^2⇒21x^2=189⇒x^2=9⇒
AD^2=100-4x^2=100-4*9=64⇒AD=8 - искомое расстояние




(5.2k баллов)