![image](https://tex.z-dn.net/?f=5%5E%7Bx%2B1%7D%2B3%2A5%5E%7B-x%7D+%5Cleq+16%5C%5C5%5Ex%3Da%3Ba%3E0%5C%5C5a%2B+%5Cfrac%7B3%7D%7Ba%7D++%5Cleq+16%5C%5C5a%5E2-16a%2B3+%5Cleq+0%5C%5C5%28a-0%2C2%29%28a-3%29+%5Cleq+0%5C%5C+0%2C2%5Cleq+a+%5Cleq+3%5C%5C5%5E%7B-1%7D+%5Cleq+5%5Ex+%5Cleq+5%5E%7Blog_53%7D%5C%5C-1+%5Cleq+x+%5Cleq+log_53)
0\\5a+ \frac{3}{a} \leq 16\\5a^2-16a+3 \leq 0\\5(a-0,2)(a-3) \leq 0\\ 0,2\leq a \leq 3\\5^{-1} \leq 5^x \leq 5^{log_53}\\-1 \leq x \leq log_53" alt="5^{x+1}+3*5^{-x} \leq 16\\5^x=a;a>0\\5a+ \frac{3}{a} \leq 16\\5a^2-16a+3 \leq 0\\5(a-0,2)(a-3) \leq 0\\ 0,2\leq a \leq 3\\5^{-1} \leq 5^x \leq 5^{log_53}\\-1 \leq x \leq log_53" align="absmiddle" class="latex-formula">
x ∈ [-1; log₅3]