![image](https://tex.z-dn.net/?f=5.%5C%3Bf%28x%29%3Dx%2B%5Cfrac4x%5C%5Cf%27%28x%29%3D1-%5Cfrac4%7Bx%5E2%7D%5C%5C1-%5Cfrac4%7Bx%5E2%7D%3D0%5C%5C%5Cfrac4%7Bx%5E2%7D%3D1%5C%5Cx%5E2%3D4%5C%5Cx_1%3D-2%2C%5C%3Bx_2%3D2%5C%5Cx%5Cin%28-%5Cinfty%3B%5C%3B-2%29%5CRightarrow+y%27%3E0%5C%5Cx%5Cin%28-2%3B%5C%3B0%29%5CRightarrow+y%27%3C0%5C%5Cx%5Cin%280%3B%5C%3B2%29%5CRightarrow+y%27%3C0%5C%5Cx%5Cin%282%3B%5C%3B%2B%5Cinfty%29%5CRightarrow+y%3E0)
0\\x\in(-2;\;0)\Rightarrow y'<0\\x\in(0;\;2)\Rightarrow y'<0\\x\in(2;\;+\infty)\Rightarrow y>0" alt="5.\;f(x)=x+\frac4x\\f'(x)=1-\frac4{x^2}\\1-\frac4{x^2}=0\\\frac4{x^2}=1\\x^2=4\\x_1=-2,\;x_2=2\\x\in(-\infty;\;-2)\Rightarrow y'>0\\x\in(-2;\;0)\Rightarrow y'<0\\x\in(0;\;2)\Rightarrow y'<0\\x\in(2;\;+\infty)\Rightarrow y>0" align="absmiddle" class="latex-formula">
В точке -2 производная меняет знак с "плюса" на "минус", значит в этой точке функция имеет максимум.