Пусть плоскость α проходит через прямую a, при этом прямая a параллельна прямой b.
Докажем, что прямая b параллельна плоскости α, то есть, у прямой b и плосости α нет общих точек. Через две параллельные прямые проходит ровно одна плоскость. Обозачим за β плоскость, проходящую через а и b. Плоскости α и β пересекаются по прямой a, значит, все общие точки плоскостей α и β лежат на прямой а. Предположим, что у прямой b и плоскости α есть общая точка N, тогда точка N не лежит на прямой a (прямые a и b параллельны), но при этом точка N принадлежит и плоскости α, и плоскости β (так как все точки, лежащие на прямой b, принадлежат β). Получили противоречие с тем, что все общие точки плоскостей α и β лежат на прямой a. Значит, у прямой b и плоскости α нет общих точек, то есть, α || b.