Помогите решить,пожалуйста! прямые 5x-3y+14=0 и 5x-3y-20=0 служат сторонами ромба, а...

0 голосов
24 просмотров

Помогите решить,пожалуйста! прямые 5x-3y+14=0 и 5x-3y-20=0 служат сторонами ромба, а прямая x-4y-4=0 его диагональю, составить уравнение других сторон ромба,сделать чертеж.


Математика (656 баллов) | 24 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Для вычерчивания удобнее представить графики функций в виде у = кх + в, где к = tg α (угол наклона к оси х), в - точка на оси у в месте пересечения этой оси графиком линии.
5х - 3у +14 = 0     у =(5/3)х + 14/3,
5х - 3у - 20 = 0     у =(5/3)х - 20/3,
х - 4у - 4 = 0          у = 0,25 х - 1.
Две стороны ромба находятся в точках пересечения графиков сторон с графиком диагонали:
Точка А: (5/3)х + 14/3 = 0,25 х - 1        х = -4,     у = -2.
Точка С: (5/3)х - 20/3 =  0,25 х - 1        х = 4,      у = 0.
Две другие точки находим по второй диагонали.
У ромба диагонали перпендикулярны и пересекаются в середине.
Середина первой диагонали имеет координаты:
Х = (Ха+Хс) / 2 = (-4+4) / 2 = 0
У = (Уа + Ус) / 2 = (-2 + 0) / 0 = -1.
Коэффициент к перпендикуляра равен к2 = -1 / к1    
к2 = -1 / (0,25) = -4.
Уравнение второй диагонали будет у = -4х - 1.
Отсюда находим две другие точки ромба:
Точка В: (5/3)х + 14/3 = -4 х - 1        х = -1,     у = 3.
Точка Д: (5/3)х - 20/3 =  -4 х - 1        х = 14,      у = -5.
По координатам найденных точек определяем уравнения сторонВС и АД по формулам: (у-у1)/(у2-у1) = (х-х1)/(х2-х1) или в общем виде
(у1-у2)х+(х2-х1)у+(х1у2-х2у1) = 0.
Получаем ВС= у = -0,6х+2,4   или  3х+5у-12 = 0,
                   АД = у = -0,6х-4,4   или  3х+5у+22 = 0.

(309k баллов)
0

Спасибо огромноееее!!!!!!!!!