; \\
\frac{2\cos2a-\sin4a}{2\cos2a+\sin4a}=tg^2({ \frac{ \pi }{4}-a}); \\
" alt=" \frac{2\cos2a-\sin4a}{2\cos2a+\sin4a} =\frac{-2cosa*\sina-1}{2cosa*sina+1}=\\
\frac{1}{\sin2a+1}-\frac{\sin2a}{\sin2a+1}; \\
tg^2({ \frac{ \pi }{4}-a})=\frac{-2cosa*sina-1}{2cosa*sina+1}= \\
\frac{1}{\sin2a+1}-\frac{\sin2a}{\sin2a+1}; \\
\frac{1}{\sin2a+1}-\frac{\sin2a}{\sin2a+1}=\frac{1}{\sin2a+1}-\frac{\sin2a}{\sin2a+1} =>; \\
\frac{2\cos2a-\sin4a}{2\cos2a+\sin4a}=tg^2({ \frac{ \pi }{4}-a}); \\
" align="absmiddle" class="latex-formula">