Составьте уравнения касательной к графику функции y=x^3-2x^2+3x+4 в точке с абсциссой x=2

0 голосов
36 просмотров

Составьте уравнения касательной к графику функции y=x^3-2x^2+3x+4 в точке с абсциссой x=2


Алгебра (28 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

Функция диференцируема в окрестности точки x_0=2,значит касательная будет выглядеть:

f_k_a_s=f(x_0)+f'(x_0)(x-x_0)

Производная функции имеет вид:

f'(x)=3x^2-4x+3

f(x_0)=f(2)=2^3-2*2^2+3*2+4=10

f'(x_0)=f'(2)=3*2^2-4*2+3=7

 

f_k_a_s=10+7(x-2)=7x-4

(2.7k баллов)