![image](https://tex.z-dn.net/?f=7%5E%7B3x%2B4%7D+%5Cgeq+1%5C%5C7%5E%7B3x%2B4%7D+%5Cgeq+7%5E0%5C%5C3x%2B4+%5Cgeq+0%5C%5C3x+%5Cgeq+-4%7C%3A3%5C%5Cx+%5Cgeq+-1+%5Cfrac%7B1%7D%7B3%7D%5C%5Cx%5Cin%5B1+%5Cfrac%7B1%7D%7B3%7D%3B%2B%5Cinfty%29%5C%5C%5C%5C7%5E%7Bx-1%7D+%5Cleq++%5Csqrt%7B7%7D%5C%5C7%5E%7Bx-1%7D+%5Cleq+7%5E%7B0%2C5%7D%5C%5Cx-1+%5Cleq+0%2C5%5C%5Cx+%5Cleq+1%2C5%5C%5Cx%5Cin%28-%5Cinfty%3B1%2C5%5D%5C%5C%5C%5C0%2C5%5E%7Bx%5E2-4%7D%3E0%2C5%5E%7B3x%7D%5C%5Cx%5E2-4%3C3x%5C%5C+x%5E2-3x-4%3C0%5C%5C%28x-4%29%28x%2B1%29%3C0+%5C%5C+x%5Cin%5B-1%3B4%5D%5C%5C%28-1%2B0%2B1%2B2%2B3%2B4%29%3A6%3D9%3A6%3D1%2C5)
0,5^{3x}\\x^2-4<3x\\ x^2-3x-4<0\\(x-4)(x+1)<0 \\ x\in[-1;4]\\(-1+0+1+2+3+4):6=9:6=1,5" alt="7^{3x+4} \geq 1\\7^{3x+4} \geq 7^0\\3x+4 \geq 0\\3x \geq -4|:3\\x \geq -1 \frac{1}{3}\\x\in[1 \frac{1}{3};+\infty)\\\\7^{x-1} \leq \sqrt{7}\\7^{x-1} \leq 7^{0,5}\\x-1 \leq 0,5\\x \leq 1,5\\x\in(-\infty;1,5]\\\\0,5^{x^2-4}>0,5^{3x}\\x^2-4<3x\\ x^2-3x-4<0\\(x-4)(x+1)<0 \\ x\in[-1;4]\\(-1+0+1+2+3+4):6=9:6=1,5" align="absmiddle" class="latex-formula">