Три натуральных числа Натуральные числа x, y, z, меньшие 100, удовлетворяют уравнениям...

0 голосов
40 просмотров

Три натуральных числа
Натуральные числа x, y, z, меньшие 100, удовлетворяют уравнениям
1099x+901y+1110z=58103,109x+991y+101z=11956.
Найдите 10000x+100y+z.


Математика (186 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
1099x+901y+1110z=58103,
109x+991y+101z=11956.

1110z дает в последнем разряде 0
9х+1у дают в последнем разряде 3,а 
9х+1у+1z 
дают в последнем разряде 6
Значит 1z дают в последнем разряде 6-3=3, значит z точно кончается на 3.

58103/1110≈52,34, т.е. z может быть 3,13,23,33,43

1099x+901y+1110z=58103,
109x+991y+101z=11956.

1099x=58103-1110z-901у
109x=11956-101z-991у

х=(58103-1110z-901у)/1099
х=(11956-101z-991у)/109

(58103-1110z-901у)/1099=(11956-101z-991у)/109
(58103-1110z-901у)*109=(11956-101z-991у)*1099
6333227-120990z-98209y=13139644-110999z-1089109y
990900y=6806417+9991z
y=(6806417+9991z)/990900
Подставляем
z=3   у
≈6,9
13       =7 -только это вариант дает натуральное число

23      
≈7,1
33     
≈7,2
43     
≈7,3

х=
(11956-101*13-991*7)/109=34

10000x+100y+z=10000*34+100*7+13=340713
(239k баллов)