Sin(3arcctg√3 +2arccos 1/2)=
***
3arcctg√3=3*π/6=π/2,
2arccos 1/2=2*π/3=2π/3
sin(3arcctg√3 +2arccos 1/2)=sin(π/2+2π/3)=sin(7π/6)=sin(π+π/6)=-sinπ/6=-1/2
cos(3arcsin(√3/2)+2arccos(-1/2))=
3arcsin(√3/2)=3*π/3=π
2arccos(-1/2)=2*2π/3=4π/3
cos(3arcsin(√3/2)+2arccos(-1/2))=cos(π+4π/3)=cos(7π/3)=cos(6π/3+π/3)=
=cos(π+π/3)=-cosπ/3=-1/2