![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7B3x%3E0%7D+%5Catop+%7B1-3x+%5Cneq+0%7D%7D+%5Cright.+)
0} \atop {1-3x \neq 0}} \right. " alt=" \left \{ {{3x>0} \atop {1-3x \neq 0}} \right. " align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%3E0%7D+%5Catop+%7B1+%5Cneq+3x%7D%7D+%5Cright.+)
0} \atop {1 \neq 3x}} \right. " alt=" \left \{ {{x>0} \atop {1 \neq 3x}} \right. " align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=+%5Cleft+%5C%7B+%7B%7Bx%3E0%7D+%5Catop+%7Bx+%5Cneq++%5Cfrac%7B1%7D%7B3%7D+%7D+%5Cright.+)
0} \atop {x \neq \frac{1}{3} } \right. " alt=" \left \{ {{x>0} \atop {x \neq \frac{1}{3} } \right. " align="absmiddle" class="latex-formula">
Ответ: область определения функции x∈(0;
![\frac{1}{3} \frac{1}{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B3%7D+)
) и (
![\frac{1}{3} \frac{1}{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B3%7D+)
;+∞)