Расстояние между пунктами А и В равно 160 км. Из А в В выехал велосипедист, и в то же...

0 голосов
78 просмотров

Расстояние между пунктами А и В равно 160 км. Из А в В выехал велосипедист, и в то же время из В в А выехал мотоциклист. Их встреча произошла через 2 ч, а через 30 мин после встречи велосипедисту осталось проехать в 11 раз больше, чем мотоциклисту. Каковы скорости мотоциклиста и велосипедиста?


Алгебра (21 баллов) | 78 просмотров
Дан 1 ответ
0 голосов

Пусть скорость велосипедиста Х, скорость мотоциклиста У, тогдадо встречи каждый проехал 2Х км и 2У км, получаем уравнение 2Х+2У=160

затем каждый ехал еще 30 мин, т.е 0,2ч и проехал всего каждый 2,5Х км и 2,5У км. Велосипедисту осталось проехать (160-2,5Х)км ,а мотоциклисту (160-2,5У)км. По условию велосипедисту осталось проехать в 11 раз больше, чем мотоцикл., значит

(160-2,5У)х11=160-2,5Х

 из первого уравнения получаем 2Х=160-2У, отсюда Х=80-У, подставляем

(160-2,5У)х11=160-2,5х(80-У)

1760-27,5У=160-200+2,5У

1760-160+200=2,5У+27,5У

30У=1800

У=60

скорость мотоциклиста 60км/ч, а скорость велосипедиста 80-60=20 км/ч

 

(1.7k баллов)