Найдём сторону правильного четырехугольника , вписанного в окружность: R=a/√2 а=√2R a=√2·8=8√2
Периметр квадрата равен : Р=4·8√2=32√2
r=a/2 радиус вписанной окружности равен половине стороны
r=8√2:2=4√2
С---длина окружности
С=2πr C=2π·4√2=8√2π
Р/С=32√2:8√2π=4/π
Ответ :4/π