![image](https://tex.z-dn.net/?f=ctgx%3D0%2C25%3B%5C%5C+x%5Cin%5Cleft%280%3B%5Cfrac%5Cpi2%5Cright%29%3D%3D%3Ectgx%2C%5C+tgx%2C%5C+%5Csin+x%2C%5C+%5Ccos+x%3E0%5C%5C+tgx%3D%5Cfrac1%7Bctgx%7D%3D%5Cfrac1%7B0%2C25%7D%3D4%3B%5C%5C%0A+%5Cleft+%5C%7B+%7B%7B%5Cfrac%7B%5Csin+x%7D%7B%5Ccos+x%7D%3Dtgx%3D4%3B%7D+%5Catop+%5Csin%5E2x%2B%5Ccos%5E2x%3D1%7D%7D+%5Cright.%0A%5Csin+x%3D4%5Ccos+x%3B%5C%5C%0A16%5Ccos%5E2x%2B%5Ccos%5E2x%3D1%3B%5C%5C%0A17%5Ccos%5E2x%3D1%3B%5C%5C%0A%5Ccos%5E2x%3D%5Cfrac1%7B17%7D%3B%5C+%5C+%5Ccos+x%3D%5Cfrac1%7B%5Csqrt%7B17%7D%7D+%3B%5C%5C%0A%5Csin%5E2x%3D1-%5Ccos%5E2x%3D1-%5Cfrac%7B1%7D%7B17%7D%3D%5Cfrac%7B16%7D%7B17%7D%3B%5C%5C%0A%5Csin+x%3D%5Cfrac4%7B%5Csqrt17%7D)
ctgx,\ tgx,\ \sin x,\ \cos x>0\\ tgx=\frac1{ctgx}=\frac1{0,25}=4;\\
\left \{ {{\frac{\sin x}{\cos x}=tgx=4;} \atop \sin^2x+\cos^2x=1}} \right.
\sin x=4\cos x;\\
16\cos^2x+\cos^2x=1;\\
17\cos^2x=1;\\
\cos^2x=\frac1{17};\ \ \cos x=\frac1{\sqrt{17}} ;\\
\sin^2x=1-\cos^2x=1-\frac{1}{17}=\frac{16}{17};\\
\sin x=\frac4{\sqrt17}" alt="ctgx=0,25;\\ x\in\left(0;\frac\pi2\right)==>ctgx,\ tgx,\ \sin x,\ \cos x>0\\ tgx=\frac1{ctgx}=\frac1{0,25}=4;\\
\left \{ {{\frac{\sin x}{\cos x}=tgx=4;} \atop \sin^2x+\cos^2x=1}} \right.
\sin x=4\cos x;\\
16\cos^2x+\cos^2x=1;\\
17\cos^2x=1;\\
\cos^2x=\frac1{17};\ \ \cos x=\frac1{\sqrt{17}} ;\\
\sin^2x=1-\cos^2x=1-\frac{1}{17}=\frac{16}{17};\\
\sin x=\frac4{\sqrt17}" align="absmiddle" class="latex-formula">
ответ: