0;\\
\sin\alpha=-\sqrt{1-\cos^2\alpha}=-\sqrt{1-\left(\frac{\sqrt6}{4}\right)^2}=-\sqrt{1-\frac{6}{16}}=\\
=-\sqrt{\frac{16}{16}-\frac6{16}}=-\sqrt{\frac{16-6}{16}}=-\sqrt{\frac{10}{16}}=-\frac{\sqrt{10}}{4};\\
tg\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{-\frac{\sqrt{10}}{4}}{\frac{\sqrt{6}}{4}}=-\sqrt{\frac{5}{3}};\\" alt="\cos\alpha=\frac{\sqrt{6}}{4};\ \ \frac\pi2<\alpha<\pi;\\
\forall \alpha\in\left(\frac\pi2;\pi\right):\\
ctg\alpha<0;\ \ tg\alpha<0;\ \ \sin\alpha<0;\ \ \cos\alpha>0;\\
\sin\alpha=-\sqrt{1-\cos^2\alpha}=-\sqrt{1-\left(\frac{\sqrt6}{4}\right)^2}=-\sqrt{1-\frac{6}{16}}=\\
=-\sqrt{\frac{16}{16}-\frac6{16}}=-\sqrt{\frac{16-6}{16}}=-\sqrt{\frac{10}{16}}=-\frac{\sqrt{10}}{4};\\
tg\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{-\frac{\sqrt{10}}{4}}{\frac{\sqrt{6}}{4}}=-\sqrt{\frac{5}{3}};\\" align="absmiddle" class="latex-formula">