-1 \\ log_{ \frac{1}{7}}(2x-1)>-1\cdot log_{ \frac{1}{7}} \frac{1}{7} \\ " alt="log_{ \frac{1}{7}}(2x-1)>-1 \\ log_{ \frac{1}{7}}(2x-1)>-1\cdot log_{ \frac{1}{7}} \frac{1}{7} \\ " align="absmiddle" class="latex-formula">
log_{ \frac{1}{7}} \frac{1}{7} ^{-1} \\ log_{ \frac{1}{7}}(2x-1)>log_{ \frac{1}{7}} 7" alt="log_{ \frac{1}{7}}(2x-1)>log_{ \frac{1}{7}} \frac{1}{7} ^{-1} \\ log_{ \frac{1}{7}}(2x-1)>log_{ \frac{1}{7}} 7" align="absmiddle" class="latex-formula">
0} \atop {2x-1<7}} \right. \\ \left \{ {{2x>1} \atop {2x<8}} \right. \\ \left \{ {{x> \frac{1}{2} } \atop {x<4}} \right. " alt=" \left \{ {{2x-1>0} \atop {2x-1<7}} \right. \\ \left \{ {{2x>1} \atop {2x<8}} \right. \\ \left \{ {{x> \frac{1}{2} } \atop {x<4}} \right. " align="absmiddle" class="latex-formula">
Ответ (1/2 ; 4)
7-4x=0 x= 7/4=2,75
x-8≠0 x≠8
\\\\\\\\\\\\\\\\\\\
--------------[2,75]-------------(8)------------
Ответ. [2,75; 8)