Вычислить производную от функции заданной неявно

0 голосов
44 просмотров

Вычислить производную от функции заданной неявно
\frac{1}{ \sqrt{2x+y^2} }+ln(cosx)=0


Математика (1.6k баллов) | 44 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
((2x+y^2)^{-\frac{1}{2}}+ln(cosx))'=0\\-\frac{1}{2}*(2x+y^2)^{-\frac{3}{2}}*(2x+y^2)'+\frac{1}{cosx}*(cosx)'=0\\-\frac{1}{2\sqrt{(2x+y^2)^3}}*(2+2y*y')+\frac{-sinx}{cosx}=0\\1+y*y'=tgx*(-\sqrt{(2x+y^2)^3})\\y'=\frac{-tgx\sqrt{(2x+y^2)^3}-1}{y}
будут вопросы - задавайте.
(10.1k баллов)
0

Спасибо большое! Очень благодарна!