Рыболов отправился ** лодке от пристани по течению реки. Назад ему надо вернуться через 7...

0 голосов
65 просмотров

Рыболов отправился на лодке от пристани по течению реки. Назад ему надо вернуться через 7 часов. Собственная скорость лодки 8 км/ч, а скорость течения реки 2 км/ч. На какое наибольшее расстояние от пристани ( в километрах) может отплыть рыболов, если во время своей поездки он планирует пробыть на берегу 5 часов?


Математика (20 баллов) | 65 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Суммарная скорость по течению(8+2)=10км/ч,а против течения(8-2)=6км/ч. значит можно составить два уравнения
(8+2)*Х=(8-2)*У
Х+У=2
решая их получаем
Х=0,75ч или 45минут он плыл по течению
У=1,25ч или 1ч15минут он плыл против течения
расстояние равно 7,5км
 

(416 баллов)
0

Спасибо!!! извините за тупость, но можно расписать решение уравнения. Откуда взялись 0,75 и 1,25 ?

0

х+у=2

0

х+у=2;значит х=2-у;подставляем значение х впервое уравнение получаем 10*(2-у)=6*у;20-10у=6у;20=16у;у=20:16;у=1,25 следовательно х=2-1,25=0,75