Найти угловой коэффициент касательной к графику функции. f(x)=5+8x-x^3/3 в точке с...

0 голосов
64 просмотров

Найти угловой коэффициент касательной к графику функции.
f(x)=5+8x-x^3/3
в точке с абсциссой х0=2


Алгебра (263 баллов) | 64 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Сперва находим производную функции 5+8*x-x^3/3.
Получаем 8-x^2.
Подставляем 2 вместо x, чтобы найти k. 
k = 8-2^2=4
Ответ:4

(466 баллов)
0 голосов

F(x) = 5 + 8x - x^3 /3
Найдем производную:
[f(x) = 8 * 1 - (x^3/3)'
f(x) = 8 - 3x^2*3 - x^3 * 0 / 9 = 8 - 9x^2/ 9 = 8 - x^2
f ' (x) = k
f ' ( 2 ) = 8 - 
2^2 = 8 - 4 = 4
k = 4

(5.3k баллов)