при каком значении параметра А система уравнений имеет а) одно решение б) три...

0 голосов
40 просмотров

при каком значении параметра А система уравнений имеет а) одно решение б) три решения

{x^2+y^2=3 и y-x^2=A


Алгебра (72 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.

2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.

Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 

(56.6k баллов)