1" alt="3cos^2x-7sinx-7=0\\3(1-sin^2x)-7sinx-7=0\\3-3sin^2x-7sinx-7=0|*(-1)\\3sin^2x+7sinx+4=0\\y=sinx\\3y^2+7y+4=0\\D=7^2-4*3*4=49-48=1\\y_1=(-7+1)/2*3=-6/6=-1\\y_2=(-7-1)/2*3=-8/6=-4/3=-1 \frac{1}{3}\\\\sinx=-1\\x=3 \pi /2+2 \pi n, n\in Z\\\\sinx \neq -1 \frac{1}{3}\\|sinx| \leq 1\\|-1 \frac{1}{3}|=1 \frac{1}{3}>1" align="absmiddle" class="latex-formula">
Ответ: